R(3,3,3)=17
更详尽的可见于www.combinatorics.org/Surveys/ds1/sur.pdf
R(3,3)等于6的证明
证明:在一个K6的完全图内 , 每边涂上红或蓝色 , 必然有一个红色的三角形或蓝色的三角形 。
任意选取一个端点P , 它有5条边和其他端点相连 。
根据鸽巢原理 , 3条边的颜色至少有两条相同 , 不失一般性设这种颜色是红色 。
在这3条边除了P以外的3个端点 , 它们互相连结的边有3条 。
若这3条边中任何一条是红色 , 这条边的两个端点和P相连的2边便组成一个红色三角形 。
若这3条边中任何一条都不是红色 , 它们必然是蓝色 , 因此 , 它们组成了一个蓝色三角形 。
而在K5内 , 不一定有一个红色的三角形或蓝色的三角形 。 每个端点和毗邻的两个端点 的线是红色 , 和其余两个端点的连线是蓝色即可 。 这个定理的通俗版本就是友谊定理 。
------------------------------------------提个问题花多少时间 , 我百度搜关键字 ‘拉姆齐二染色定理’ 的第一个竟然显示你这个问题!! 第二个就是
拉姆齐二染色定理的百科你不会看一下 , 你能告诉我你们这种人都脑子都在想什么么?西塔潘猜想 , 又称“拉姆齐二染色定理” , 是由英国数理逻辑学家西塔潘于上个世纪90年代提出的一个猜想 。 在组合数学上 , 拉姆齐(ramsey)定理是要解决以下的问题:要找这样一个最小的数n , 使得n个人中必定有k个人相识或l个人互不相识 。 2011年5月 , 由北京大学、南京大学和浙江师范大学联合举办的逻辑学术会议在浙江师范大学举行 , 中南大学数学科学与计算技术学院酷爱数理逻辑的刘嘉忆的报告给这一悬而未决的公开问题一个否定式的回答 , 彻底解决了西塔潘的猜想 。
西塔潘猜想是由英国数理逻辑学家西塔潘于20世纪90年代提出的一个猜想 。 但定理以弗兰克·普伦普顿·拉姆齐正式命名 , 1930年他在论文on a problem in formal logic(《形式逻辑上的一个问题》)证明了r(3,3)=6 。 因此也叫拉姆齐二染色定理 。
拉姆齐数的定义:拉姆齐数 , 用图论的语言有两种描述:对于所有的n顶图 , 包含k个项的团或l个项的独立集 。 具有这样性质的最小自然数n就称为一个拉姆齐数 , 记作r(k,l);在着色理论中是这样描述的:对于完全图kn的任意一个2边着色(e1,e2) , 使得kn[e1]中含有一个k阶子完全图 , kn[e2]含有一个l阶子完全图 , 则称满足这个条件的最小的n为一个拉姆齐数 。 (注意:ki按照图论的记法表示i阶完全图)拉姆齐证明 , 对与给定的正整数数k及l , r(k,l)的答案是唯一和有限的 。 拉姆齐数亦可推广到多于两个数 对于完全图kn的每条边都任意涂上r种颜色之一 , 分别记为e1,e2,e3,...,er , 在kn中 , 必定有个颜色为e1的l1阶子完全图 , 或有个颜色为e2的l2阶子完全图……或有个颜色为er的lr阶子完全图 。 符合条件又最少的数n则记为r(l1,l2,l3,...,lr;r) 。 [2] 拉姆齐数的数值或上下界 已知的拉姆齐数非常少 , 保罗·艾狄胥曾以一个故事来描述寻找拉姆齐数的难度:“想像有队外星人军队在地球降落 , 要求取得r(5,5)的值 , 否则便会毁灭地球 。 在这个情况 , 我们应该集中所有电脑和数学家尝试去找这个数值 。 若它们要求的是r(6,6)的值 , 我们要尝试毁灭这班外星人了 。 ”,你看看这个 , 联系他 , 他给出了否定的答案 。 在组合数学上 , 拉姆齐(Ramsey)定理是要解决以下的问题:要找这样一个最小的数n , 使得n个人中必定有k个人相识或l个人互不相识 。
- 有一种幸福叫回忆,有一种思念叫想你是什么歌 有一种幸福叫回忆
- 撒贝宁照片式记忆是真的吗 撒贝宁照片
- 描写美好回忆的词语 描写十一月美好的词语
- 360浏览器输入框记忆功能? Windows 7旗舰版系统下浏览器网页输入框无法输入文字
- 已经2020年了,你对张国荣的记忆还有多少?
- 一座城市一段回忆说说 到一座城市的心情说说
- 微信面对面建群怎么加入图片 微信面对面建群怎么加入
- 补脑良药金标状元汤,增强记忆力,心肾同调
- 如何改善孩子记忆力?试试DHA藻油软糖吧
- 李振辉回忆李小龙 李振辉
特别声明:本站内容均来自网友提供或互联网,仅供参考,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
