中考数学总复习( 三 )


中考数学总复习

文章插图



【三角变换类】典型问题:“胡不归” 。
例8.如图,A地在公路BC旁的沙漠里,A到BC的距离AH=2√3,AB=2√19,在公路BC上行进的速度是在沙漠里行驶速度的2倍 。某人在B地工作,A地家中父亲病危,他急着沿直线BA赶路,谁知最终没能见到父亲最后一面,其父离世之时思念儿子,连连问:“胡不归,胡不归……!”(怎么还不回来),这真是一个悲伤的故事,也是因为不懂数学而导致的 。那么,从B至A怎样行进才能最快到达?
中考数学总复习

文章插图

简析:BP段行驶速度是AP段的2倍,要求时间最短即求BP/2+AP最小,从而考虑BP/2如何转化,可以构造含30°角利用三角函数关系把BP/2转化为另一条线段 。如下图,作∠CBD=30°,PQ⊥BD,得PQ=1/2BP,由“垂线段最短”知当A、P、Q共线时AP+PQ=AQ\'最小 。
中考数学总复习

文章插图



【相似变换类】典型问题:“阿氏圆” 。
“阿氏圆”:知平面上两点A、B,则所有满足PA/PB=k且不等于1的点P的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿氏圆,如下图所示,其中PO:BO=AO:PO=PA:PB=k 。
中考数学总复习

文章插图

例9.已知A(-4,-4)、B(0, 4)、C(0, -6)、 D(0, -1),AB与x轴交于点E,以点E为圆心,ED长为半径作圆,点M为⊙E上一动点,求 1/2AM+CM 的最小值 。
中考数学总复习

文章插图

简析:本题的主要问题在于如何转化1/2AM,注意到由条件知在M的运动过程中,EM:AE=1:2保持不变,从而想到构造相似三角形,使之与△AEM的相似比为1:2,这样便可实现1/2AM的转化,如下图取EN:EM=1:2,即可得△EMN∽△EAM,再得MN=1/2AM,显然,MN+CM的最小值就是定点N、C之间的最短路径 。
中考数学总复习

文章插图

之后便是常规方法先求N点坐标,再求CN的长 。
中考数学总复习

文章插图



【解法大一统】
万法归宗:路径成最短,折线到直线 。
(所求路径在一般情况下是若干折线的组合,这些折线在同一直线上时即为最短路径)
基本图形:动点有轨迹,动线居两边 。
(动点轨迹可以是线或圆,动线指动点与定点或定线、定圆的连线,动线与折线同指)
核心方法:同侧变异侧,分散化连续 。
(动线在同侧进,要变为异侧,一般用翻折、三角、相似的方法构造;动折线被定长线段分散时需化为连续折线,一般用平移的方法构造,如造桥选址问题)
下图是构造完成的目标图形:
中考数学总复习

文章插图

再举2例说明上述规律的运用方法:
1.如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径为2和1,P、E、F分别是CD、⊙A、⊙B上的动点,则PE+PF的最小值为
中考数学总复习

文章插图

思考方法如下图所示:
中考数学总复习

文章插图

2.菱形ABCD中,∠BAC=60°,P是AC上的动点,求BP+1/2AP的最小值 。
中考数学总复习


特别声明:本站内容均来自网友提供或互联网,仅供参考,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。