精度超越Transformer,MIT、港大提出基于物理模型的Neuro-Symbolic视觉推理框架( 三 )



图 11. 扩展到新的反事实概念 “更重”
参考文献
[1] The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision. Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. ICLR 2019.
[2] CLEVRER: CoLlision Events for Video REpresentation and Reasoning. Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B. Tenenbaum. ICLR 2020.
[3] Object-based attention for spatio-temporal reasoning: Outperforming neuro-symbolic models with flexible distributed architectures. David Ding, Hill Felix, Santoro Adam, and Botvinick Matt. arXiv 2020.
[4] Grounding Physical Concepts of Objects and Events Through Dynamic Visual Reasoning. Zhenfang Chen, Jiayuan Mao, Jiajun Wu, Kwan-Yee K. Wong, Joshua B. Tenenbaum, and Chuang Gan. ICLR 2021.
【精度超越Transformer,MIT、港大提出基于物理模型的Neuro-Symbolic视觉推理框架】本文来自微信公众号 “机器之心”(ID:almosthuman2014), 作者:Synced, 36氪经授权发布 。


特别声明:本站内容均来自网友提供或互联网,仅供参考,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。