基本不等式的几个公式 基本不等式公式四个大小关系( 三 )


222222222222abaybxaybxxyabababxyxyxy?????????????????≥,所以??222ababxyxy???≥.当且仅当22aybxxy?,即abxy?时等号成立.推广:若0,0??iiba,则????nnnnbbbaaabababa?????????????212212222121成立 。当iiba??时,等号成立 。若0,0,0???mbaii,则????mnmnmnmnmmmmbbbaaabababa?????????????????211211212111成立 。当iiba??时,等号成立 。注意观察,m成为该不等式的权,它的特点是分子的幂指数比分母的幂指数高1次 。例1.求函数)20(cos8sin1)(?????xxxxf的最小值解析:????????
55cossin41cos4sin1cos8sin1)(2122232122321223????????xxxxxxxf例2.已知,12,,*???yxRyx求yx21?的最小值()解析:9)2()21(22121221212???????yxyxyx)(例3.已知??Ryx,,且18??yx,则2211yx?的最小值为A28B64C264D125方法1:权方和不等式:111112121212()()qqqqnnqqqqnnaaaaaabbbbbb?????????????????得:333222221114(14)125(8)(8)xyxyxy???????方法2:大柯西不等式:0,0,0iiiabc???,则3333121212111222()()()()nnnnnnaaabbbcccabcabcabc?????????????????322221111(8)(8)()(14)xyxyxyxy???????方法3:利用导数:110,08xyy?????,22221111()(18)fyxyyy?????,3333331622[(2)(18)]()(101)(18)(18)yyfyyyyyy?????????????,min1()()12510fyf??例4.已知00xy??,,且191xy??,则xy?的最小值是_______.解析:yxyxyx???????2223131911)(?9??yx例5.已知0,0??yx,且12??yx,则yx11?的最小值是_______.解析:2232)21(221212111222???????????yxyxyxyx例6.已知0,0??yx,且292??yx,求yx?2的最小值 。答案225例7.已知0,0??yx,且123??yx,求yx23?的最小值 。答案25例8.求函数??291,0,122fxxxx??????????的最小值总结,已知axbyc??,求dexy?的最小值;或者已知decxy??,求axby?的最小值.权方和不等式可秒此类题目
cbeadbyaxbeadbybeaxadbybeaxadyexd2222)()(??????????
byaxbeadbybeaxadbybeaxadyexdc?????????222)(???byaxcbead2)(?四、因式分解+基本不等式+轮换对称性+参数方程例1.已知0,0??ba且3???baab,则ba?的最小值为()解一:????????????621122114113??????????????????bababababaab当且仅当:,11???ba即3,3??ba时??6min??ba解二:(参数方程)解三:轮换对称性 。解四:令61cot21tan2,1cot2,1tan2cot21,tan21??????????????????????bababa.例2.已知正实数,xy满足24xyxy???,则xy?的最小值为__________解:24xyxy???得:6)2)(1(42???????yxyxxy,令??cot62,tan61????yx得:3622cot61tan6?????????yx五、几个重要基本不等式以及万能Δ法(1)若aR?,则20,0aa??;(2)若,abR?,则222abab??(当且仅当ab?时等号成立);(3)若,,abR??则2abab??(当且仅当ab?时等号成立)—基本不等式推广:若,,abR??则2221122abababab??????;当且仅当ab?时等号成立;应用:设,,abR??则“积为定值和有最小值”,“和为定值积有最大值” 。注意:“一正二定三相等”例1.已知,12??yx求22yxx??的最小值()解法一:令??5404012222222222222???????????????????????mmmmmmmyyymymmymxmyxx解法二:??????????sincos21coscossincos21,1sincos2sin,cos?????????????rrrrrryrx;
451cos2sin21cos2sin2cos21cossincos2????????????????????也可三角函数求值域????
541121cos12sinsincos21cos22?????????????mmmmmm?????例2.设,5,0,0????baba则31???ba的最大值()解法一:23231231????????baba解法二:3,1;9,1,133,112222???????????????yxyxybxaybxa圆心到直线yx?的距离,23,32???????yxtrtd当且仅当,yx?即23,27,31??????baba例3.已知0,0xy??,且115xyxy????,则xy?的最大值是________思路:本题观察到所求xy?与11xy?的联系,即2114112xyxyxyxy???????,代入方程中可得:????????245540xyxyxyxy??????????,解得:14xy???,所以最大值为4 。答案:4例4.已知20ab??,则4(2)abab??的最小值为______________思路一:所求表达式为和式,故考虑构造乘积为定值以便于利用均值不等式,分母为??2bab?,所以可将a构造为??112222aabb?????????,从而三项使用均值不等式即可求出最小值:341818(2)3(2)3(2)2(2)2(2)aabbabbbabbabbab????????????????????思路二:观察到表达式中分式的分母??2bab?,可想到作和可以消去b,可得????2222babbaba???????????,从而244(2)aababa????,设??24faaa??,可从函数角度求得最小值(利用导数),也可继续构造成乘积为定值:??32244332222aaaafaaa??????? 。答案:3例5.已知ab?,且1ab?,则22abab??的最小值是解析:222222222abaabbabababab????????????例6.已知??,0,ab???,且21ab??,则2224sabab???的最大值是()A.212?B.21?C.21?D.212?解析:22222222ababab???????????,??222222142222ababab??????????????22142ab?????212s???六、不等式精选试题1.以下基本不等式最值为什么错误?说明理由()(1)4424?????xxxxy(2)????????????????????2,032sin3sin2sin3sin?xxxxxy(3)4104loglg2104loglg?????xxxxy2.已知0,?yx且42??yx,则??12?yx的最大值是(3)3.已知0,?yx且42??yx则yx12?的最小值是(2)4.已知0,?ba且12??ba则baba31431???的最小值是(5223?)5.已知0???cba则????cabbaabca?????1112的最小值是(6)6.已知52322??ba,则21222????bay最大值是(437)7.已知0,?yx且12??yx,则224131yxyxyx???最小值是(4)8.已知0,?yx且1019????yxyx,则yx?的最大值是()解析:82???yx9.已知0???cba,则??2296442cacbaaaba?????的最小值为(D)A.4B.5C.52D.8解析:????21614144abababaaab???????,后用均值不等式10.已知0,?ba且111??ba则1911???ba的最小值是(6)11.若正数ba,满足112??ba,则1324???ba的最小值是(D)A.4B.23C.32D.6211.已知Rba?,且2??ba则111122???ba的最大值是(1)12.已知0,?yx且419211????yxyx则yx1673?的最小值是(41?)解析:


特别声明:本站内容均来自网友提供或互联网,仅供参考,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。