基本不等式的几个公式 基本不等式公式四个大小关系( 四 )


414192916732916734191673211???????????????yxyxyxyxyx13.已知21,1??yx不等式????114122222????xayyax恒成立,则实数a的最大值为(4)14.已知实数yx,满足1422???xyyx,则yx?2的最大值是(5102)15.已知正实数yx,满足xyyx???62,则xy的最小值是(18)16.已知实数cba,,满足1,0222??????cbacba,则a的最大值是(36)17.已知实数yx,满足545422???yxyx,设22yxS??则??minmax11SS(58)18.已知,1222???zyx则yzxy?3的最小值法一、令?????????????sinsincossincoszyx??1,13sin2sin3???????????????yzxy法二、??????131114432222222???????????yzxyyyzyyxyzxy法三、令??????????181,84,8381,84,83818483023|,,;02|,,;023|,,3,,min222222??????????????????????????????????????????????????????
fffzyxyzxzyxfzyzyxfxyzyxfzyxyzxyzyxfyyx????19.已知BA,是函数xy2?的图像上的相异两点,若点BA,到直线21?y的距离相等,则点BA,的横坐标之和的取值范围是(B)A.??1,???B.??2,???C.??3,???D.??4,???20.函数??Inxxf?,若ba??0,且????bfaf?,则ba?的取值范围????,221.函数??xxflg?,若ba??0,且????bfaf?,则ba2?的取值范围????,322.??xxxf2cos14sin3???的最大值为??4123.已知,,Ryx?62322??yx,则yx?2的最大值为(11),最小值为(11?)24.已知正数yx,满足??22??yxxy,则yx?的最小值为()325.已知yx,满足??4??yxxy,则yx?的最小值为(32)26.小题训练1.若a,b,c为实数,则下列命题为真命题的是()A.若ab?,则22acbc?B.若0ab??,则22aabb??C.若0ab??,则11ab?D.若0ab??,则baab?2.不等式|5||3|10xx????的解集是()A.[5,7]?B.[4,6]?C.(,5][7,)??????D.(,4][6,)??????3.下列不等式:①12xx??;②1||2xx??;③若01ab???,则loglog2abba???;④若01ab???,则loglog2abba??.其中正确的是()A.②④B.①②C.②③D.①②④4.若,xyR?且满足32xy??,则3271xy??的最小值是()A.339B.122?C.6D.75.若直线22221(0,0)xyabab????过点(1,1),则ab?的最小值等于()A.2B.3C.4D.56.对于实数x,y,若|1|1x??,|2|1y??,则|21|xy??的最大值为()A.1B.2C.4D.57.已知,abR??,且1ab??,则2()Paxby??与22Qaxby??的关系是()A.PQ?B.PQ?C.PQ?D.PQ?8.若函数()|1||2|fxxxa????的最小值为3,则实数a的值为()A.5或8B.1?或5C.1?或4?D.4?或89.已知abc??,若11nabbcac?????,则n的最大值为()A.3B.4C.14D.810.设1x??,则(5)(2)1xxyx????的最小值为()A.4B.9C.7D.1311.已知正数x,y满足1xy??,则11()()zxyxy???的最小值为()A.2(21)?B.4C.254D.812.若实数x,y满足221xyxy???,则xy?的范围是()A.2(3,)3??B.[6,)??C.22[3,3]33?D.3(,]4??13.设x,y时满足24xy??的正数,则lglgxy?的最大值是.14.已知关于x的不等式|1|||1xxc????无解,实数c的取值范围.15.若不等式|3|4xb??的解集中的整数有且仅有321,,则b的取值范围为.16.若正实数x,y满足244xyxy???,且不等式2(2)22340xyaaxy?????恒成立,则实数a的取值范围是.答案:1-5:BDCDC6-10:DADBB11、12:CC13.lg214.(,0][2,)?????15.(5,7)16.5[,3][,)2?????17.已知正实数ba,满足1??ba,则222124abab???的最小值为_______.【解析】【分析】对222124abab???变形为222124142ababab????????????,再转化为??222124142abababab?????????????,利用基本不等式即可求得最小值,问题得解 。【详解】因为1ab??,且,ab都是正实数.所以2221241414222ababababab??????????????????
14144421277211babaababababab???????????????????????????当且仅当12,33ab??时,等号成立.所以222124abab???的最小值为1118.已知正实数x,y满足141223xyxy????,则xy?的最小值为______.【答案】94构造有关的等式关系.yx?=????12234xyxy???????,利用基本不等式的性质即可解决.【详解】12xy?+423xy?1?,yx?=????12234xyxy???????,那么:1)(????yxyx=????12234xyxy???????×(12xy?+423xy?)=14(1+??42234232xyxyxyxy??????)=??522342342xyxyxyxy??????∵??2231223424xyxyxyxy??????=1,当且仅当yx?2=32时取等号.所以:yx?≥59144??.故yx?的最小值为94.故答案为:9419.已知0a?,0b?,且23abab??,则ab的最小值是__________.【解析】因为23abab??23226abab????,当且仅当23ba?时取等号.因此ab的最小值是26.20.已知正实数cba,,满足111ab??,111abc???,则c的取值范围是_____.【答案】4(1,]3【解析】由11ab?=1,可得1bab??,由111abc???,得111111121cabbb?????????,1121bb?????,11014121bb???????,3114c??,413c??,故答案为41,3??????.21.(2019·陕西省商丹高新学校期末(理))已知0x?,0y?,若2282yxmmxy???恒成立,则实数m的取值范围是()A.4m≥或2m??B.2m?或4m??C.42m???D.24m???【答案】C22.(2020·湖南长沙·长郡中学期末)函数1(3)3yxxx????的最小值为()A.5B.3C.2D.5?【答案】A23.(2020·陕西商洛·期末(文))已知,ab为正数,2247ab??,则21ab?的最大值为()A.7B.3C.22D.2【答案】D24.(2020·吉林洮北·白城一中期末(理))若直线10axby???,(a,0b?)过点??2,1?,则11ab?的最小值为()A.322?B.8C.42D.322?【答案】D25.(2020·湖北期中)已知0x?,0y?,且23xyxy??,则2xy?的最小值是()A.3B.22C.322?D.83【答案】D26.(2020·安徽宣城·月考(文))若0a?,0b?,112ab??,则4ab?的最小值为()A.92B.4C.72D.3【答案】A27.(2020·安徽宣城·月考(理))已知0x?,0y?,22xyxy??,若xay?的最小值为8,则正实数a的值为()A.2B.32C.3D.92【答案】D28.(2020·安徽月考)若实数)1,0(,?ba,且41?ab,则ba???1211的最小值()解析:3244214)24(214244421421141121141412???????????????????????aaaaaaabab?29.(2020·蚌埠田家炳中学开学考试)求函数222163xxy???的最小值()解析一:


特别声明:本站内容均来自网友提供或互联网,仅供参考,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。